Table of Contents

Class Matrix3Support

Namespace
NominalSystems.Maths
Assembly
NominalSystems.Maths.dll

Provides additional support functions for 3x3 matrices


public class Matrix3Support
Inheritance
Matrix3Support

Constructors

Matrix3Support()

public Matrix3Support()

Methods

PointingDCM(Vector3)

Return a DCM where the Up vector (the third row) points parallel to the given direction vector. The orientation given by the DCM is represented in N frame coordinates.

public static Matrix3 PointingDCM(Vector3 direction_N)

Parameters

direction_N Vector3

The direction vector, in N frame coordinates

Returns

Matrix3

The DCM

PointingDCM(Vector3, Vector3)

Return a DCM where the Up vector (the third row) points parallel to the given direction vector, and the Right vector (the first row) points in the direction of the alignment vector (after projection perpendicular to the Up vector) The orientation given by the DCM is represented in N frame coordinates.

public static Matrix3 PointingDCM(Vector3 direction_N, Vector3 alignment_N)

Parameters

direction_N Vector3

The direction vector, in N frame coordinates

alignment_N Vector3

The alignment vector, in N frame coordinates

Returns

Matrix3

The DCM

Rot1(double)

This function returns the DCM that corresponds to a 1-axis rotation by the angle theta.The DCM is the positive theta rotation from the original frame to the final frame.

public static Matrix3 Rot1(double angle)

Parameters

angle double

The input rotation angle

Returns

Matrix3

A new matrix

Rot2(double)

This function returns the DCM that corresponds to a 2-axis rotation by the angle theta. The DCM is the positive theta rotation from the original frame to the final frame.

public static Matrix3 Rot2(double angle)

Parameters

angle double

The input rotation angle

Returns

Matrix3

A new matrix

Rot3(double)

This function returns the DCM that corresponds to a 3-axis rotation by the angle theta. The DCM is the positive theta rotation from the original frame to the final frame.

The input rotation angle A new matrix
public static Matrix3 Rot3(double angle)

Parameters

angle double

Returns

Matrix3

SkewMatrix(Vector3)

This function returns the skew-symmetric matrix version of a Vector The skew-symmetric matrix of 'a', notated [a], is the matrix equivalent to the vector cross product where [a] b = a x b

public static Matrix3 SkewMatrix(Vector3 vec)

Parameters

vec Vector3

The input vector

Returns

Matrix3

The converted Matrix